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Robotic Uniform Coverage
of Arbitrary–Shaped Connected Regions

Paul M. Maxim and William M. Spears

Abstract—In this article we present a novel algorithm for
uniform coverage of a region. Surveillance, cleaning, and mine
detection are some applications that would benefit from this type
of algorithm. Prior work has claimed that this task is impossible
to solve for non–convex regions [7]. Our algorithm enables
robots to uniformly cover arbitrary path–connected regions, such
that the robot movements are not predictable and the region
periphery is not neglected. The algorithm assumes that robots
are independent and is physics–based, relying on an analogy
with mean free paths of particles. Validation of the algorithm is
rigorously provided via simulation and real robot experiments.

Index Terms—uniform coverage, arbitrary–shaped connected
regions, mean free path, Markov chains, robot experiments.

I. I NTRODUCTION

Robotic coverage can be defined as the problem of moving
a sensor or actuator over all points in a given region [10].
Robotic de–mining operations, snow removal, lawn mowing,
car–body painting, reconnaissance, surveillance, search and
rescue operations, and ship hull cleaning are some of the
multitude of tasks that coverage algorithms can be applied
to. A coverage algorithm must generate what is called a
coveragepath, which is a sequence of motion commands for
a robot. These algorithms can be classified as either complete
or heuristic and randomized.

By definition, complete algorithms guarantee a path that
completely covers a path–connected [16], robot–traversable
region [4]. Heuristic algorithms on the other hand, use simple
rules that may work very well, but they have no provable
guarantees to ensure the success of coverage.

Some of the existing complete algorithms decompose the
region to be covered into subregions that are simple to cover,
then a travelling salesman algorithm is applied to generate
a coverage path that covers each subregion in turn [10], [4].
Another approach is to create an artificial potential field, where
a numerical value is assigned to each cell. This value is then
increased every time there is a visit to the cell. The next
step is then taken to the cell with the lowest value among
the adjacent cells. Real–time complete coverage can also be
achieved by making the robot mark its path, and then avoid
areas previously marked [6]. The algorithms require prior
knowledge of the shape of the environment and/or the ability
to change the environment, either physically or virtually.

Heuristic algorithms for coverage employ simple behaviors,
such as spiraling, room crossing, or wall following [11].
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More complicated actions, like explorations, can be achieved
with a hierarchy of cooperating behaviors. Although complete
coverage is not guaranteed, there are advantages to this class of
algorithms. A cost/benefit analysis for randomized search has
been performed separately, by Balch [2] and Gage [7]. Robots
using randomized search strategies can be less expensive than
robots using methods that need precise localization hardware.
Balch found that it may be effective to use a randomized
search if the robots without localization capabilities can be
constructed at one fifth the cost of the more expensive robots.

Gage focuses on coverage for de–mining purposes and he
takes into consideration the probability of a robot’s sensor to
detect a mine. The probability of correctly detecting a mine is
directly proportional to the advantages of methodical search
algorithms over the randomized search algorithms. When these
advantages eventually disappear, the use of less expensive
hardware is preferable.

Gage introduces a randomized search strategy that provides
uniform coverage [7] and defines certain properties that a path
generator algorithm must take in consideration: (1) the path
should not be predictable (so that an observer cannot predict
the robot’s future path by knowing its prior path), (2) the path
must not be determined by a fixed reaction to environmental
features, and (3) the periphery of the search space should
not be neglected. The algorithm presented is based on diffuse
reflection – how light reflects off a matte surface – which is
then generalized to any convex search areas. However, in order
to implement this algorithm, “the searchermust be able to
determine its position within the search area, and the distance
to the opposite boundary in all directions”. Gage states that it
is impossible to extend this strategy to generalized non–convex
areas, unless more restrictions are added.

We have invented a novel, yet simple, algorithm that meets
Gage’s three properties, but works in a broad class of envi-
ronments that can be tiled with square cells. The environment
must be path–connected and robot–traversable, but can be
convex or concave. The algorithm is randomized and complete.

Section II introduces the environment generation tool, the
simulation tool we developed to test our algorithm, the per-
formance metric, and the test environments. Two versions of
our uniform coverage algorithm are also presented in this
section. In Section III we present the theory that supports our
algorithm. Validation of our algorithm with actual robot ex-
periments is presented in Section VI. Section VII summarizes
this article.
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II. SIMULATION

A. Environment Generator

Our environment generator allows us to control the shape
and the size of the environment. To be able to monitor how
uniformly the robot is covering the environment, we split
the environment into equal–size square cells (Figure 1). For
example, a square environment that is60 × 60 units can be
split into 9 equal cells, each cell being20 × 20 units (we
will henceforth adopt the convention that a cell that isc × c
units will be referred to as a cell of sizec). This way we can
monitor how often each cell was visited and measure how well
the algorithm is performing. To ensure that our algorithm is
scale invariant, we also test on scaled–down versions of the
same environment, as we explain next.

0 1 2
3 4 5
6 7 8

Fig. 1. A 60 × 60 units environment tiled with nine cells of size 20.

We created a graphical environment generator tool that
allows a user to specify the initial cell size and its decrement
factor. The decrement factor is used to generate scaled–down
versions of the generated environment. For example, if a cell
size of 30 units is chosen with a decrement factor of 5 units, a
total of 5 environments will be generated, having cell sizes 30,
25, 20, 15, and 10 units. Note, this does not change the number
of cells, since the whole environment is scaled the same way.
The Graphical User Interface (GUI) presents the user a square
window with a grid whose vertices are equally placed at the
initial cell size intervals. The user then clicks on the vertices of
the desired environment. When all the vertices are selected, a
right click anywhere on the grid will cause the tool to generate
all the environments and then exit. A GUI snapshot showing
an arbitrary environment outline is presented in Figure 2 (the
generated output is presented in Listing 7 from Appendix A).

The output files are namedenvironmentX.ini, where X
represents the cell size. Using the same example as above, the
output files are:environment30.ini, environment25.ini, envi-
ronment 20.ini, environment15.ini, and environment10.ini.
Each of these files contains the total number of vertices the
environment has, the coordinates of each of these vertices, the
total number of cells and the lower–left corner coordinates of
each of the cells, as well as the length of one cell side. The
60 × 60 environment with nine cells of size 20 is presented
in Listing 1.

B. Simulation Tool

Our simulation is programmed in theC language and we
use the Free OpenGL Utility Toolkit (Freeglut) version 2.4.0
library [19] to add graphic display capabilities. Freeglut is an
open–source alternative to the OpenGL Utility Toolkit (GLUT)
library. We run our simulation on platforms running Linux–
based operating systems, but it can easily be ported to different
platforms and operating systems.

Fig. 2. Environment generator snapshot

Listing 1. environment20.ini example
�

vertex_number 4
0 0
0 60
60 60

5 60 0
cell_number 9
0 0
0 20
0 40

10 20 0
20 20
20 40
40 0
40 20

15 40 40
cell_size 20

1) Configuration and control:The configuration and con-
trol of the simulation tool can be performed at two levels: be-
fore and during the simulation. Before the simulation is started,
a configuration file allows the user to set certain parameters
to their desired values. Some of these parameters control the
simulation environment, like the size of the graphics window,
the simulation speed, and the simulation length, while other
parameters control the actual algorithm and the robot, or agent,
being simulated. Examples are the obstacle detection sensor
range and the distance at which the robot will react to the
obstacles.

The actual simulation window has three distinct areas.
The top area displays important real–time data about the
current simulation, the middle area is the largest and it shows
the outline of the environment together with the robot that
navigates through the environment. The robot is shown as a
blue disk, with a black dot marking its current heading and a
red line that shows the position and the current range of the
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Fig. 3. Uniform coverage simulation engine snapshot featuring a complex
84 cell environment (cell size of 20)

obstacle detection sensor. A legend at the bottom of the screen
informs the user about the commands that can be performed
while the simulation is running, like increasing or decreasing
the simulation speed or the obstacle detection sensor response
range. Figure 3 shows a snapshot of the simulation window
that features a complex 84 cell environment. In this figure, the
robot is shown inside the top chamber of the environment.

A file with the environment configuration must be provided
to the simulation tool. For our preliminary experiments a
robot is run for 10 million time steps inside this environment,
recording to a file (every 10,000 time steps) the number
of visits the robot has made to each of the cells in the
environment (the final distribution of visits per cell is what
we are most interested in). Initially, for each environment we
varied the starting position of the robot from being in a corner,
a side, or an interior cell. Also the obstacle detection sensor
response range was set to 1.0 unit to meet Gage’s condition
that the periphery should not be neglected. To avoid wall
collisions the robot velocity was set to 0.8 units/step.

C. Kullback–Leibler Divergence

After we run our simulation tool on an environment we get
a distribution that shows us how many visits each cell in the
environment has. Rather than just rely on visual inspection,
a metric is necessary to formally measure the difference
between this observed distribution and the optimum uniform
distribution.

In probability theory, the Kullback–Leibler divergence is
a non–commutative measure of the difference between two
probability distributionsP andQ. Typically P represents the
“true” distribution of data, observations, or a precise calculated

theoretical distribution. The measureQ typically represents a
theory, model, description, or approximation ofP [12].

In our caseP represents the observed distribution andQ
represents the optimum uniform distribution. The minimum di-
vergence is 0.0, meaning the observed distribution is precisely
the same as the uniform distribution. The K–L divergence of
Q from P is defined to be:

DKL(P‖Q) =
∑

i

P (i)log
P (i)

Q(i)
(1)

In general, a K–L divergence of 0.01 is considered to be
an excellent match between the two distributions [1]. For our
results with real robots our goal is for a K–L divergence of
approximately 0.01. For simulation results our goal is 0.001
since we can run the simulation for a far greater number of
steps.

D. Markov Chain Analysis

Markov chains are used in mathematics to describe the
future states of a stochastic process based on the present
state [8]. The future states are independent of the past state
and are reached through a probabilistic process. A change of a
state is called a transition and the probability that governs this
change is called a transition probability. A probability matrix
Q defines the probability of transitioning to a statej in the
next step, given the system is currently in statei (i.e.,Q(i, j)).

A Markov chain is ergodic if all states are recurrent,
aperiodic, and communicate with each other. A statei is
transient if there exists a statej that is reachable fromi, but
statei is not reachable fromj. If a state is not transient, it is
recurrent. Also, a statei is periodic if all paths leading fromi
back toi have a length that is multiple of some integerk > 1.
If this is not the situation, the state is aperiodic. All states
communicate with each other if there is a path from any state
i to any statej (and vice versa).

Every ergodic Markov chain has a steady–state distribution
that describes the long–term behavior of the system. The
existence of a steady–state distribution indicates that the initial
state of the system is of no importance in the long term.
Furthermore, ifQ is symmetric (Q(i, j) = Q(j, i)), then
the steady–state distribution is the uniform distribution. This
latter property is crucial to achieving a good uniform coverage
algorithm.

Here we assume that a state is simply the cell that the robot
is in. The robot transitions from cell to cell as it moves. Hence,
if our algorithm for moving the robot can be described as an
ergodic Markov chain with a symmetric probability transition
matrix, the steady–state distribution must be uniform and the
algorithm is correct. The algorithm is also complete if the
environment is path–connected and robot–traversable.

Consider the nine–cell environment shown in Figure 1. Let
us also consider an idealized situation where a robot can reside
at the center of cells. For example, suppose the robot is at the
center of cell 4. The robot could then transition to adjacent
cells 1, 3, 5, or 7. The probability of transitioning directly to
cells 0, 2, 6, or 8 is essentially zero (i.e., the robot would
have to pass through cells 1, 3, 5, or 7 first to get to the
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other cells). Hence we will ignore the “diagonal” neighbors.
An ideal algorithm is as follows. The robot turns uniformly
randomly and then attempts to move. It might stay in the same
cell (if the cell is along the border of the environment), or it
might enter an adjacent cell. If it enters an adjacent cell we
assume it then moves to the center of that cell, so that the
algorithm can continue.

The Markov chain for this idealized algorithm is trivial to
compute. If a cell hasb periphery edges, then there is ab/4
probability of staying in that cell. The remaining probability
mass is uniformly distributed to adjacent cells.

The probability transition matrixQ for the nine–cell envi-
ronment is:

2

6

6

6

6

6

6

6

6

6

6

4

0.50 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.00
0.25 0.25 0.25 0.00 0.25 0.00 0.00 0.00 0.00
0.00 0.25 0.50 0.00 0.00 0.25 0.00 0.00 0.00
0.25 0.00 0.00 0.25 0.25 0.00 0.25 0.00 0.00
0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.25 0.00
0.00 0.00 0.25 0.00 0.25 0.25 0.00 0.00 0.25
0.00 0.00 0.00 0.25 0.00 0.00 0.50 0.25 0.00
0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.25 0.25
0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.25 0.50

3

7

7

7

7

7

7

7

7

7

7

5

(2)
This matrix is ergodic and the steady–state distribution

indicates that each cell is visited precisely1/9th of the time,
which is what we desire.

It is important to point out that this is an existence proof
that an algorithm may exist that provides uniform coverage for
all path–connected environments that can be tiled with square
cells. The algorithm given above is not realistic. However, the
argument above does provide guidance on how to create a
viable algorithm: the resulting Markov chain must be ergodic
and have a symmetric probability transition matrix.

E. First Algorithm

Our first algorithm requires only that the robot be able to
sense an object (wall) in front of it. The robot starts by moving
forward. When it senses an object directly in front of it, the
robot stops. Then the robot makes a uniform[−π, π] random
turn. If there is still an object in front, the robot turns again.
The robot continues to turn until it detects no obstacle in front
of it. Then the robot moves forward again. This algorithm does
not avoid the periphery, it is not predictable, and it works in
all path–connected environments. Proof of this claim lies in
the assumption of tiling the environment with square cells. The
resulting Markov chain is ergodic and will have a steady–state
distribution. However, it is not clear whether the steady–state
distribution is uniform.

F. Environments

The first test of our algorithm was on a simple40 × 40
units square environment, with four cells of size 20. As seen
in Listing 2, the distribution is very close to uniform. This
is reasonable, since all four cells are corner cells and can be
considered equivalent.

Listing 2. Visits in the four cell square environment
�

cell 0: 2503625
cell 1: 2500184
cell 2: 2494401
cell 3: 2501790

The next tested environment is the60 × 60 units square
environment shown in Figure 1, with nine cells. This provides
us with different categories of cells, such as corners, sides, and
an inner cell. The results for this environment are presented in
Listing 3. We can see that the distribution isnot uniform. In
fact, the center cell (4) has the least amount of visits. The main
reason is the inner position of this cell. The robot does not
detect any obstacles in this cell and spends the least amount
of time there because it moves straight through it. Clearly,
this first algorithm is not adequate, since the probability of
transitioning from the center cell to any other cell is higher
than transitioning from any other cell to the center cell. A
similar difference exists between the corner cells and side
cells.

Listing 3. Visits in the nine cell square environment (1st algorithm)
�

cell 0: 1242516
cell 1: 1048036
cell 2: 1229541
cell 3: 1042531

5 cell 4: 888209
cell 5: 1052790
cell 6: 1225855
cell 7: 1041632
cell 8: 1228890

Taking random turns only when detecting a wall is not
sufficient. This tells us that in certain situations,Q(i,j) 6= Q(j,i).
An improvement has to be brought to this algorithm. This
improvement is inspired from physics, as we describe next.

G. Second Algorithm

The prior results on the nine cell environment indicate that
the transition probabilities are not symmetric. In fact, the
results indicate that the robot needs to spend more time in
cells with less peripheral edges. This can be achieved using the
concept ofmean free pathfrom physics. In physics, a molecule
in a gas moves with constant speed along a straight line
between successive collisions. The mean free path is defined
as the average distance between such successive collisions [9].
Depending on the number of molecules in the space available
to them, the mean free path can range from zero to infinite.

In the first algorithm, the only time the robot changes
direction is when it senses a wall. Hence it spends less time in
cells with fewer peripheral edges. In order to counteract this,
we want the robot to act as if it collides with another virtual
object occasionally. Hence we want the robot to randomly
change direction after it has moved a certain distance, namely,
its mean free path. Since the mean free path needs to be
normalized by the cell size, we assume the mean free path
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will be f × c, wheref is some real number, andc is the cell
size.

We empirically determined thatf ≈ 0.6 works best. If we
rerun the same experiment with the nine–cell environment,
the results are shown in Listing 4. We can easily see the
improvement of this version of the algorithm over the previous
version. By using the Kullback–Leibler (K–L) divergence
metric we can measure how close this distribution is to the
uniform distribution. For this experiment the K–L divergence
is 0.000060. Remember that the closer this metric is to 0.0,
the better. To give a better understanding of how the K–L
metric changes over time, Figure 4 shows the graph of the
K–L divergence metric every 10,000 time steps for 10 million
time steps. This graph is not smooth because it represents only
one simulation run.

Listing 4. Visits in the nine–cell square environment (2nd algorithm)
�

cell 0: 1098245
cell 1: 1110451
cell 2: 1112045
cell 3: 1124196

5 cell 4: 1127813
cell 5: 1124090
cell 6: 1089300
cell 7: 1111144
cell 8: 1102716
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Fig. 4. K–L divergence metric for the nine–cell square environment

It is important to note that because the Markov chain is
ergodic the time average of our algorithm converges to the
ensemble average that would be computed by running the
algorithm multiple times [21]. Hence, it isn’t necessary to
perform multiple runs – the long term behavior of the algo-
rithm represents the ensemble average and more realistically
describes the behavior of a robot, which we assume has a
very long–term presence in the environment, performing the
desired coverage task.

III. D ERIVATION OF THE MEAN FREE PATH

The mean free path can be thought of as the average distance
travelled by a robot to move from one cell to another adjacent
cell. Consider Figure 5, with two adjacent cells. Each cell is
1 × 1 units in size. Without loss of generality, assume robot
A is located inside the left cell at coordinates(x1, y1). We
would like to compute the average distance travelled by the
robot to barely enter the right cell at location(1 + ǫ, y2).

A

Fig. 5. What is the average distance travelled by A to enter theright cell?

The simplest way to compute this distance is via simulation
as shown in Listing 5. Functionu01() returns floating point
values uniformly randomly from 0 to 1. This simulation yields
a mean free path of 0.6517.

Listing 5. Mean free path simulation –C code
�

int main( int argc, char** argv ) {
int i, N;
double sum, x1, x2, y1, y2;
N = 10000000;

5 sum = 0.0;
for (i = 1; i <= N; i++) {

x1 = u01();
x2 = 1.001;
y1 = u01();

10 y2 = u01();
sum = sum + sqrt((x2 - x1)*(x2 - x1) + \

(y2 - y1)*(y2 - y1));
}
printf("Average length = %f\n", sum/N);

15
return 0;

}

A more formal derivation can be accomplished by comput-
ing the average distance using a definite integral:

∫

1

0

∫

1

0

∫

1

0

√

((1 − x1)2 + (y1 − y2)2) dx1dy1dy2 (3)

The solution to the indefinite integral [18] is:

F (x1, y1, y2) =

»

3y2
4
− 28y1y2

3 + 42y1
2y2

2
−

36(1 − x1)y2
2

q

y2
2
− 2y1y2 + (1 − x1)

2 + y1
2

− 28y1
3y2 +

48(1 − x1)
3y2 ln

`

−y2 + y1 +

q

y2
2
− 2y1y2 + (1 − x1)

2 + y1
2

´

+

72(1 − x1)y1y2

q

y2
2
− 2y1y2 + (1 − x1)

2 + y1
2

−

12(y2 − y1)
4 ln

`

1 − x1 +

q

y2
2
− 2y1y2 + (1 − x1)

2 + y1
2

´

+

48(1 − x1)
3y1 ln

`

y2 − y1 +

q

y2
2
− 2y1y2 + (1 − x1)

2 + y1
2

´

+

24(1 − x1)
3

q

y2
2
− 2y1y2 + (1 − x1)

2 + y1
2

−

36(1 − x1)y1
2

q

y2
2
− 2y1y2 + (1 − x1)

2 + y1
2

–»

−1

288

–

(4)
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Given this, we can evaluate the definite integral to be [17]:

F (1, 1, 1) − F (1, 0, 1) − F (0, 1, 1) + F (0, 0, 1) −

F (1, 1, 0) + F (1, 0, 0) + F (0, 1, 0) − F (0, 0, 0) = .651757
(5)

This conforms with the value computed using Listing 5.
In experiments, we noted thatf = 0.60 works very well,
which is slightly lower than theory. The difference is caused
by the fact that the robot must stay 1 unit away from the walls,
which in turn makes the length of the mean free path slightly
smaller. For example, we generally use cells of size 20. Thus,
having a wall response range of 1 unit provides a 5% buffer
zone. Assuming a 5% buffer, the theoretical mean free path is
lowered to 0.6079, which is extremely close to our empirically
derived value.

It is important to note that the concept of mean free passage
has allowed us to make the probability transitions symmetric
(Q(i, j) = Q(j, i)). This can be observed by noting that robot
A could be in any cell of any square–tiled environment, and
the mean free passage is the average distance travelled to enter
any adjacent cell, regardless of whether these cells are on the
periphery or not.

IV. FURTHER CONFIRMATION

We ran our simulation over a large variety of environments
and we generally obtain a K–L divergence number of 0.001
or lower (the mean over all environments is 0.00066 with a
standard deviation of 0.00068), which indicates that the behav-
ior is extremely close to the optimum. Each simulation is run
40 million time steps. Table I provides results over numerous
environments and cell sizes. The environment outlines are
presented in Figures 21, 22, and 23 from Appendix A.

TABLE I
K–L DIVERGENCE METRIC FOR DIFFERENT ENVIRONMENTS AND CELL

SIZES

Cell Size (units)Environment
10 15 20 25 30

3x1 0.00011 0.00005 0.00003 0.00003 0.00002
4cellL 0.00026 0.00022 0.00019 0.00016 0.00022

4cellRoll 0.00090 0.00082 0.00068 0.00066 0.00071
7cell 0.00078 0.00075 0.00064 0.00056 0.00061
3x3 0.00018 0.00010 0.00007 0.00007 0.00006

15cell 0.00019 0.00010 0.00015 0.00016 0.00019
22cell 0.00088 0.00124 0.00188 0.00137 0.00145
35cell 0.00138 0.00079 0.00067 0.00067 0.00106
6x6 0.00021 0.00011 0.00009 0.00008 0.00009

82cell 0.00223 0.00114 0.00269 0.00097 0.00059
84cell 0.00210 0.00309 0.00067 0.00156 0.00064
10x10 0.00051 0.00057 0.00009 0.00057 0.00065

Figure 6 shows snapshots in time with one simulated robot
uniformly covering the rather complex 84 cell environment.
The grey–scale denotes the frequency that a particular cell
is occupied (darker means less often). The uniformity of
the grey cells in the last snapshot (lower right) indicates
excellent uniform coverage. The K–L divergence graph for
this environment is shown in Figure 7 and at the last step in
the simulation its value is 0.00067.

(a) – 10,000 time steps (b) – 100,000 time steps

(c) – 1,500,000 time steps (d) – 5,000,000 time steps

(e) – 10,000,000 time steps (f) – 40,000,000 time steps

Fig. 6. One simulatedMaxelbot obtaining uniform coverage in a complex
84 cell environment – snapshots taken at the time steps shown above
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Fig. 7. K–L divergence metric for a simulated 84 cell environment
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V. THEORY FORMULTIPLE ROBOTS

One robot does very well at uniformly covering an environ-
ment using our algorithm. We have shown that, if a connected
environment is composed ofC square cells, in the long term
there is a 1

C
probability of the robot being in each cell.

Let us assume we have a team ofN independent robots
performing the same algorithm in a large environment, such
that their interactions are minimal (they merely have to avoid
each other on rare occasions). For example,N ∈ [10, 50] is
very reasonable for systems that are usually deployed in the
field. The probability of one robot being in one of the cells
is 1

C
. The probability of one robotnot being in that cell is

1−
(

1

C

)

. The probability of allN robotsnot being in that cell

is then
(

1 −
(

1

C

))N
. Hence, the probability that at least one

robot is in that cell is:

1 −

(

1 −

(

1

C

))N

(6)

Now suppose we require some minimum probability such
that some robots will be in any cell at any time step. Let us
call this probabilityPm. Then we need to set the number of
robotsN high enough, such that:

(

1 −

(

1 −

(

1

C

))N
)

> Pm (7)

Now we can easily compute the number of robotsN that
we need to satisfy the constraints imposed by the task.

VI. H ARDWARE IMPLEMENTATION

Moving from the simulation world to the real–world appli-
cation is not necessarily a small step. Before we can do this
move, we need to carefully choose the real–world equivalents
for the two most important simulation measuring units. First,
the unit to measure distance in the simulation world is 1
pixel, and we translate that to 2.54 centimeters in the real
world. Second, time is measured in “steps” in the simulation,
and we translate that to seconds in the real world. Having
defined these basic units of measure, we can easily translate
the important variables, like the maximum speed of the robot
and the obstacle detection response range.

The hardware experiments are performed using ourMax-
elbots. The Maxelbot is a robot platform equipped with
a trilateration–based localization system, developed in our
laboratory [20], [14], [15]. The trilateration module includes
three acoustic transducers, three parabolic cones, and a radio
(RF) transceiver. The parabolic cones convert the acoustic
energy into the horizontal plane. When aMaxelbot “pings,”
it emits an RF pulse from the transceiver and an acoustic
pulse from one transducer. When otherMaxelbots receive
the RF pulse, they start listening for the acoustic pulse,
using all three transducers. The time of flight is measured
at each transducer, which is converted to distance using the
speed of sound. These three distances yield the range and
bearing of the “pinging”Maxelbot. Hence, our trilateration
is a one–to–many protocol, allowing multipleMaxelbotsto
simultaneously trilaterate and determine the position of the

transmittingMaxelbot. The effective sensing range is roughly
three meters, due to attenuation of the acoustic pulse. The RF
can be heard to at least ten meters.

In the following experiments the trilateration–based local-
ization module is used in a novel way. OneMaxelbotis moving
inside the environment (the “coverage robot), while stationary
Maxelbots(“monitor robots”), embedded in the walls of the
environment, record its position at all times.

The trilateration module on the movingMaxelbot emits
one RF–acoustic pulse every 120 milliseconds. This translates
to 8.33 pulses per second or a frequency of 8.33 Hz. This
is important in order to compute the time passed from the
number of trilateration readings. For example, 100 trilateration
readings are equivalent to roughly 12 seconds of run time. To
detect obstacles, the movingMaxelbot is equipped with our
Obstacle Detection Module [14], which, in this setup, uses
only two Infra Red sensors. The two IR sensors are placed at
the front corners of theMaxelbotand are aimed straight ahead.
We use two IR sensors instead of one (as in the simulation) to
enhance wall detection and minimize collisions with the walls.
The robot stops and turns if either sensor detects an object
within the response range. For our experiments the IR sensors
are polled once per second. With maximum battery charge, the
Maxelbottravels approximately 22.86 centimeters per second.
To prevent collisions with the walls, the response range is
set to 34.29 centimeters (to cope with robot momentum). The
main body of code is presented in Listing 6 in Appendix A.

The embedded stationarymonitor robotsmonitor the posi-
tion of the single movingcoverage robotand send the data
in real time to a PC over a serial wired connection (this
was eventually replaced with a wireless Bluetooth connection,
as described in [15]). This data allows us to verify that the
moving robot does indeed visit all the “cells” equally often.
All the environments presented next are broken into virtual
cells, all cells having the same size, which is 0.762 meters×
0.762 meters. Each of the corners of these virtual cells have
their coordinates preset. The number of visits to one of these
virtual cells translates to how many trilateration readings were
performed inside the perimeter of the cell. This allows us not
only to count how many times the perimeter of any cell was
crossed, but also the amount of time the robot has spent inside
the cell perimeter.

Next, in this section we present three different environments
with increased complexity that were chosen for these exper-
iments. For each environment we present the experimental
setup and how well uniformity is achieved by looking both at
the Kullback–Leibler divergence metric and a graphical off–
line rendering of the frequency of the cell occupancy.

A. Square Environment

The first environment in which we test our uniform coverage
algorithm is a small, 1.524 meters× 1.524 meters, square en-
vironment. As mentioned earlier, the cell size is 0.762 meters,
which yields a 2× 2 cell environment. In this environment
all cells are equivalent. The experiment serves as a control
study to ensure that no unexpected biases have occurred in
our hardware implementation.
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Fig. 8. Square environment (1.524 meters× 1.524 meters)

Figure 8 shows a picture of the experimental setup that we
built in our Distributed Robotics Laboratory at the University
of Wyoming. Each tile on our laboratory floor is exactly 30.48
× 30.48 centimeters, and this makes it easy for the placement
of the “walls”, which are pine wood beams, 4.572 meters
long, 15.24 centimeters wide, and 25.4 centimeters tall. For
this particular experiment we also used a top of a wood table,
which is exactly 1.524 meters long, for one of the walls. In the
lower right corner of the picture there is one stationary monitor
robot (inside the outline) that is performing the localization,
based on the pulses emitted by the other moving coverage
robot (shown inside the square environment). The monitor
robot is connected to a serial port on a PC in order to transmit
real–time data on the position it senses the coverage robot.

Based on simulation results, we estimated that 20 minutes
would be sufficient to yield a K–L divergence less than 0.01.
This generated a little over 9,700 trilateration readings. Table II
shows the virtual cell division for this environment, which was
used during the data analysis. A trace of the path taken by the
moving Maxelbot is shown in Figure 9. The snapshots were
taken at 0.2, 1, 3 and 20 minutes and show that after only 3
minutes, most of the environment was already covered.

Another useful graphical representation of this data is shown
in Figure 10. Each of the four snapshots were taken at the same
time the path trace snapshots in Figure 9 were taken, and show
the frequency of occupancy of the four cells (brighter means
the cell was visited more often). The exact number of cell
visits for each cell are shown in Table III.

This shows that our cell occupancy distribution is very close
to the uniform distribution and that there do not appear to be
any biases in our implementation. The evolution over time of
this metric is shown in Figure 11. The results indicate that the
K–L divergence dropped to 0.01 after only 5,000 steps and
then dropped further to 0.0012.

B. Rectangular Environment

For a more difficult experiment we used a larger 1.524
meters× 4.572 meters environment. This configuration yields

TABLE II
CELL DIVISION OF THE 1.524METERS× 1.524METERS ENVIRONMENT

3 1
2 0

(a) – 0.2 minutes (b) – 1 minute

(c) – 3 minutes (d) – 20 minutes

Fig. 9. Maxelbotpath trace in the 1.524 meters× 1.524 meters environment
– snapshots taken at the above shown times

(a) – 0.2 minutes (b) – 1 minute

(c) – 3 minutes (d) – 20 minutes

Fig. 10. Cell occupancy in the 1.524 meters× 1.524 meters environment –
snapshots taken at the times shown above
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TABLE III
SPECIFIC CELL VISITS FOR THE1.524METERS× 1.524METERS

ENVIRONMENT

Time – minutes (readings× 100)
Cell 0.2 1 3 ∼20

number (1) (5) (15) (97)

0 0 58 270 2,576
1 0 104 391 2,464
2 43 116 271 2,253
3 57 222 568 2,407

K–L div. – 0.110353 0.050299 0.001158
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Fig. 11. K–L divergence for the 1.524 meters× 1.524 meters environment

a 2 × 6 cell environment (with 0.762 meters cell size).
Not only is the environment three times larger but it is also
composed of two categories of cells – corner cells and edge
cells. Table IV shows how we numbered each of the 12 cells.
Although it is possible for one monitor robot to “hear” the
RF–acoustic pulse generated by the moving coverage robot,
the accuracy of the localization reduces drastically above three
meters. The solution to this problem is to use two monitor
robots, one at each end of the rectangular environment. The
picture of the experimental setup is shown in Figure 12. The
two Maxelbotsused for monitoring are highlighted with the
circular outlines and the coverage robot is featured in the
center of the environment. Both monitor robots monitor the
whole environment.

TABLE IV
CELL DIVISION OF THE 4.572METERS× 4.572METERS ENVIRONMENT

(THE UPPERMaxelbotMONITORS CELLS0, 1, 2, 6, 7,AND 8 AND THE

LOWER MaxelbotMONITORS CELLS3, 4, 5, 9, 10,AND 11)

6 0
7 1
8 2
9 3
10 4
11 5

Fig. 12. Rectangular environment (1.524 meters× 4.572 meters)

During this experiment there are two sets of trilateration
readings that are generated (one from each monitor robot).
Since data can be lost occasionally, when sent over the RF,
it is possible for the two data sets to lose synchronization.
This would make it very difficult to merge the data from the
two monitor robots. In order to help with the synchronization
between the two data sets, we introduce an identification
number to the RF signal. Each time the coverage robot is
broadcasting the RF – acoustic pulse combination, a number
is also transmitted over the RF. This number is incremented
with every pulse. The monitor robots attach this number to the
trilateration reading performed. This tuple is then transmitted
in real time to a PC that is connected to both monitor robots
with serial cables.

Since the environment is larger, we estimated that the
coverage robot would need to run for approximately two hours
in order to achieve an acceptable level of uniformity (K–L
divergence near 0.01). During this time, 60,000 trilateration
readings were performed by each of the two monitoring
Maxelbots. Figure 13 shows a graphical representation of the
two data sets before merging. We found this to be a good
test of the range and accuracy of our localization system.
The localization system on one of theMaxelbotsperforms
better than the other one, especially at distances over three
meters (note especially the impossible locations outside of the
environment).

To merge the data and reduce noise, we divided the environ-
ment into halves. Then we selected coordinates from the upper
monitor robot that are in the upper half of the environment.
Similarly we selected coordinates from the lower monitor
robot that are in the lower half. We used the time stamp
to resolve ambiguities. The results are shown in Figure 14.
Although we do not filter the points shown in this Figure,
for data analysis we discard all the points that are outside the
outline of the environment.

The frequency of the occupancy of the cells for this envi-
ronment is shown in Figure 15. The brighter the cell the higher
the number of visits to that cell. The snapshots are taken at
0.2, 5, 30, 60, and 120 minutes and the exact number of visits
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(a) – the upperMaxelbot (b) – the lowerMaxelbot

Fig. 13. Individual localization readings performed by the two fixed
Maxelbots

Fig. 14. Merged localization readings performed by the two fixedMaxelbots

they represent are shown in Table V. After approximately 5
minutes into the experiment, all the 12 cells in the environment
were reached, with cells in the center having a larger number
of visits compared with the cells close to the two ends. As the
data shows, this discrepancy is drastically reduced 120 minutes
into the experiment.

The final Kullback–Leibler divergence metric was approxi-
mately 0.015. The graph of this metric for the entire length of
this experiment is shown in Figure 16. Although this wasn’t
quite as low as expected, it is still very reasonable. Note

TABLE V
SPECIFIC CELL VISITS ANDK–L DIVERGENCE FOR THE

1.524METERS× 4.572METERS ENVIRONMENT

Time – minutes (trilateration readings× 100)
Cell 0.2 5 30 60 ∼120

number (1) (25) (150) (299) (598)

0 0 35 779 1616 5242
1 0 49 899 2472 6102
2 0 24 1131 2701 5665
3 0 256 1355 2580 6612
4 5 402 1437 2327 5908
5 0 265 1561 2103 5168
6 0 41 660 1397 3512
7 0 6 572 1944 4487
8 0 82 1105 2800 4489
9 41 638 2034 3951 5807
10 54 498 2005 3248 5206
11 0 204 1462 2761 3877

K–L div. – 0.469953 0.069357 0.035933 0.015255

(a) – 0.2 minutes (b) – 5 minutes (c) – 30 minutes

(d) – 60 minutes (e) – 120 minutes

Fig. 15. Cell occupancy in the 4.572 meters× 1.524 meters environment –
snapshots taken at 0.2, 5, 30, 60, and 120 minutes

that there are no obvious biases towards edge or corner cells,
which is good. It is clear that the initial placement of the
robot is still influencing the results, so steady state has not
yet been reached. Note, however, that the K–L divergence
metric depends on the cell granularity. For example, if this
environment is treated as being composed of three cells of size
1.524 meters× 1.524 meters (an upper, center, and lower cell),
the K–L divergence drops considerably to 0.002. Decreasing
the size of cells means it takes longer to achieve uniformity.

C. L–Shaped Environment

We continue testing our uniform coverage algorithm in
a more complex and larger environment, specifically an L–
shaped concave environment. Not only does this environment
contain three categories of cells (corner, edge, and an interior
cell), but achieving uniform coverage on concave environ-
ments is considered to be difficult, if not impossible [7]. The
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Fig. 16. K–L divergence metric for the 4.572 meters× 1.524 meters
environment

TABLE VI
CELL DIVISION OF THE L–SHAPED, 4.572METERS× 4.572METERS,

ENVIRONMENT

19 18 17 16 15 14
13 12 11 10 9 8
6 7
4 5
2 3
0 1

two sides of the L–shape are each 4.572 meters long, and
the width is constant at 1.524 meters. With a cell size of
0.762 meters, this environment yields a total of 20 equal cells.
The cell division and how the cells are numbered is shown in
Table VI.

The picture of the experimental setup is shown in Figure 18.
To monitor the location of the coverage robot in this larger
environment, three monitor robots are used (highlighted with
circles). As before, each monitor robot monitors a partic-
ular portion of the environment. This helps to ensure that
we are receiving accurate trilateration readings. Since this
environment is larger, the coverage robot was run for four
hours, which was the maximum life of the robot battery. The
environment outlined in Figure 17 shows the three regions,
as well as a graphical representation of the approximately
118,000 merged readings, that were collected during the four
hour long experiment. The positions of the three monitor
are shown by the three circles located outside the perimeter
and are labeled “A3”, “U2”, and “C5”. We use these labels
to distinguish between the sevenMaxelbotswe have. C5 is
responsible for cells 0, 1, 2, 3, 4, and 5.MaxelbotU2 monitors
cells 6, 7, 11, 12, 13, 17, 18, and 19. Finally, we used the data
collected byMaxelbotA3 for cells 8, 9, 10, 14, 15, and 16.

The number of visits to each of the cells can be seen
both as specific numbers in Table VII, and as a graphical
representation in Figure 19. For this environment it takes the
moving Maxelbotabout 7 minutes to visit all the cells.

Fig. 17. Merged trilateration readings from threeMaxelbotsfor the L–shaped,
4.572 meters× 4.572 meters, environment

Fig. 18. L–shaped, 4.572 meters× 4.572 meters, environment

The final K–L divergence from the uniform distribution
is 0.0088, which is excellent. There are no obvious biases
towards any of the particular categories of cells. As shown in
Figure 20, the K–L metric drops suddenly after approximately
30 minutes, meaning that a good uniform coverage is already
achieved. After that, the K–L continues to drop, but at a much
smaller rate. One very nice aspect of this experiment was
that as the battery power dropped, the speed of the robot
also dropped considerably. However, despite this real–world
condition, the K–L divergence was not adversely affected.

VII. SUMMARY

In this article we have summarized different prior ap-
proaches to robotic coverage. Each of these approaches has
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TABLE VII
SPECIFIC CELL VISITS ANDK–L DIVERGENCE FOR THEL–SHAPED, 4.572

METERS× 4.572METERS, ENVIRONMENT

Time – minutes (readings× 100)
Cell 0.2 5 25 ∼240

number (1) (25) (125) (1180)

0 0 0 430 5547
1 0 0 701 5313
2 0 0 286 6156
3 0 0 430 6228
4 0 34 396 5721
5 0 56 342 7164
6 0 121 628 6291
7 0 90 332 5140
8 40 674 1211 7145
9 0 392 1366 6737
10 0 77 964 7314
11 0 108 619 7361
12 0 163 643 6646
13 0 124 607 5200
14 59 259 653 5898
15 0 117 862 6372
16 0 106 995 7931
17 0 28 396 5090
18 0 132 597 5978
19 0 135 655 5292

K–L divergence – – 0.090440 0.008751

(a) – 0.2 minutes (b) – 5 minutes

(c) – 25 minutes (d) – 240 minutes

Fig. 19. Cell occupancy in the L–shaped 4.572 meters× 4.572 meters
environment – snapshots taken at 0.2, 5, 25, and 240 minutes
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Fig. 20. K–L divergence metric for the L–shaped, 4.572 meters× 4.572
meters, environment

its own advantages and disadvantages. Traditional complete
coverage algorithms offer the guarantee that an environment is
completely covered, but they require more expensive localiza-
tion hardware. Some of them also require knowing the shape
of the environment to be covered in advanced. Also, prior
research has shown that heuristic and randomized strategies
are more effective solutions when expensive sensor hardware
fails to perform with 100% accuracy.

One difficulty with any approach that does not include
environmental knowledge is that it is impossible to fully char-
acterize transient behavior, such as how long it will take for
a coverage robot to move from one end of an environment to
another. For example, the “22cell” environment in Appendix A
contains two chambers connected via a corridor. A robot will
generally spend a lot of time within a chamber before crossing
to the other. One nice aspect of our algorithm is that we can
encourage longer traversals simply by increasing the mean free
path constantf. Hence the robot will transition between one
chamber and another more often. There will be a degradation
in the uniformity of a coverage, but this might be worthwhile
if one is trying to spot an intruder. Hencef can be modified
to provide a balance between uniformity and long traversals.

Another advantage of our algorithm is that it is analyzable
if the environment is known (either a priori, or via “SLAM”
techniques [13]). At this point theQ matrix can be generated
and transient behavior can be computed. This is generally more
difficult for heuristic techniques.

In summary, our uniform coverage algorithm overcomes the
limitations of prior approaches. It is a randomized theory–
based algorithm that is complete, unpredictable, and covers
the periphery. The algorithm requires no knowledge about the
environment. Estimating the cell size can be based on the robot
platform size (for cleaning operations) or sensing capabilities
(for surveillance operations), rather than environmental con-
siderations. Our algorithm also extends naturally to multiple
robots. The performance of our algorithm was shown both in
simulation and real–world experiments. The Kullback–Leibler
divergence metric we used confirms that our algorithm is very
close in achieving optimal uniform coverage.
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eds.: Swarm Robotics, Springer-Verlag.

[21] Stark H. and J. Woods (1986).Probability, Random Processes, and
Estimator Theory for Engineers, Chapter 8, pp. 316–317. Prentice-Hall.

Paul M. Maxim received a Ph.D. in Computer
Science from University of Wyoming in 2008. He
has co-authored several publications and two book
chapters during his doctoral research. As a member
of the University of Wyoming Distributed Robotics
Laboratory, he was the main developer of the Maxel-
bot robot platform. His research interests include dis-
tributed robotics and robot design and development.
He is currently employed by Wyoming Department
of Transportation – Intelligent Transportation Sys-
tems program where he is mainly involved with

hardware integration, as well as software designed and development. He can
be contacted at paul.maxim@dot.state.wy.us.

William M. Spears received a Ph.D. in Computer
Science from George Mason University in 1998. He
has an international reputation for his expertise in
evolutionary computing and has a published book
on the topic. He has co-edited books on swarm
robotics and evolutionary computation. His current
research includes distributed robotics, the epidemi-
ology of virus spread, evolutionary algorithms, com-
plex adaptive systems, and learning and adaptation.
He was co-founder of the University of Wyoming
Distributed Robotics Laboratory and has approxi-

mately 75 publications. He is the CEO of Swarmotics, LLC. He can be
contacted at wspears@swarmotics.com.

APPENDIX A

The main while loop of theMaxelbotis shown in Listing 6.
Every second the obstacle avoidance module is polled and a
move counter is incremented. If an object is detected within
the sensor response range, a random turn is made clockwise
or counterclockwise, and the move counter is reset. If the
move counter is equal to two, a random turn is also made
(corresponding to the mean free path length). Otherwise the
robot continues to move forward.

Listing 6. The main body of theMaxelbot source code for the uniform
coverage algorithm

�

while (1)
{

// 1 second delay
5 delay( 150 );

move_counter++;
// get a fresh reading from the OAM
ask_the_OAM( OAM_I2C_ADDRESS );
// wait for ALL the data to be received

10 // from the OAM
while( i2c_com_in_progress );
while( get_inches( sensors[0] ) <= SENSOR_RANGE ||

get_inches( sensors[1] ) <= SENSOR_RANGE ||
move_counter == 2 ) // Mean free path

15 {
// rand() returns values from 0 to 32767
degs = ( int )( rand() % 180 + 1 );
if ( degs % 2 ) // Direction of turn

dir = 1;
20 else

dir = 0;
turn ( dir, degs );
move_counter = 0;
ask_the_OAM( OAM_I2C_ADDRESS );

25 while( i2c_com_in_progress );
}

// Move forward
forward( 1, 20 ); // Left motors
forward( 0, 20 ); // Right motors

30 }

The output of the environment generator presented in Fi-
gure 2 is shown in Listing 7. First, the total number of vertices
is shown, followed by the coordinates of each vertex, as
selected by the user. This environment is split into 47 equal-
size square cells, each cell being 20× 20 units (cell size is
shown on the last line of the output). The coordinates of the
lower left corner for each of the 47 cells of this environment
are then presented. No decrement factor was used in this
example.
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Listing 7. Data generated by the environment generator for the arbitrary
environment presented in Figure 2

�

vertex_number 12
40 120
40 260
120 260

5 120 160
200 160
200 200
260 200
260 100

10 200 100
200 140
120 140
120 120
cell_number 47

15 40 120
40 140
40 160
40 180
40 200

20 40 220
40 240
60 120
60 140
60 160

25 60 180
60 200
60 220
60 240
80 120

30 80 140
80 160
80 180
80 200
80 220

35 80 240
100 120
100 140
100 160
100 180

40 100 200
100 220
100 240
120 140
140 140

45 160 140
180 140
200 100
200 120
200 140

50 200 160
200 180
220 100
220 120
220 140

55 220 160
220 180
240 100
240 120
240 140

60 240 160
240 180
cell_size 20

Our uniform coverage algorithm was tested in simulation
on numerous environments. In Section IV we present the
experimental results. The outlines of the tested environments
are presented in Figures 21, 22, and 23. Another environment
example is shown in Figure 3.

(a) – 3x1 (cell size of 30)

(b) – 4cellL (cell size of 30)

(c) – 4cellRoll (cell size of 30)

Fig. 21. Examples of environments tested with the uniform coverage
algorithm
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(a) – 7cell (cell size of 30)

(b) – 3x3 (cell size of 30)

(c) – 15cell (cell size of 30)

(d) – 22cell (cell size of 30)

Fig. 22. Examples of environments tested with the uniform coverage
algorithm

(a) – 35cell (cell size of 30)

(b) – 36cell (cell size of 30)

(c) – 82cell (cell size of 25)

(d) – 10x10 (cell size of 30)

Fig. 23. Examples of environments tested with the uniform coverage
algorithm


